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Lattice QCD Algorithms

• Fermion determinant represented by “pseudo fermion” fields
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RHMC

detM =

∫
Dφ̄Dφ exp(−φ̄M−αφ)

=

∫
Dφ̄Dφ exp(−φ̄ r2(M)φ)

r(x) ≈ x
−α/2

with

r(x) =
n∑

k=1

αk

x + βk

and
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Omelyan Integrator
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Algorithm Shootout: R versus RHMC M. A. Clark

4. 2+1 Domain Wall Fermions

Again a comparison of R and RHMC was performed, but now using domain wall fermions with a

more realistic volume (the parameters from this study are presented in Table 2). Applying RHMC

to the case of domain wall fermions is not as trivial as for staggered fermions. The one flavour

domain wall fermion determinant is given by det

√

M
†
PFMPF

/

det

√

M
†
PVMPV = det

√
M DWF. The

additional Pauli-Villars bosonic determinant is required to cancel the heavy modes appearing in the

bulk of the fifth dimension. Unfortunately, we cannot use r(M DWF) as this would lead to a nested

inversion in the solver. Therefore, the action is written SF = !̄
(

M
†
PVMPV

)1/2

! + "̄
(

M
†
PFMPF

)−1/2

" ,

and now each matrix kernel can be written as a rational approximation. Thus we require 2 fermion

fields to simulate a single flavour contribution. The naïve additional cost of this formulation is

small (mPV # mud), but is inherently more noisy because the heavy mode cancellation is only done

stochastically. This results in larger forces, and a smaller step-size will be required than if the

cancellation was exact [4] (the resolution to this problem shall be presented in §5.2). The R algo-

rithm also uses stochastic cancellation, the bosonic Pauli-Villars field is included through the use

of negative flavour number.

The step-size dependence of the plaquette is shown in Figure 3, from this extrapolation it is

clear that to obtain a consistent result between the algorithms requires that R use an integration

step-size at least 10 times smaller than RHMC.
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Figure 3: The step-size variation of the plaquette

(mud = 0.02, additional parameters given in Table 2).
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Figure 4: The integrated autocorrelation time of the

13th time-slice of the pion propagator (mud = 0.04,

parameters given in Table 2).

No algorithm comparison would be complete without a comparison of autocorrelations. In

this study, both the plaquette and pion integrated autocorrelation times were measured, and it was

found that there was very little to distinguish the two algorithms (see, e.g., Figure 4).

5. Improving RHMC

5.1 Integration Scheme

It has recently been shown [5], that the optimal second order symmetric symplectic integrator is

not the leapfrog integrator, rather it is that given by Omelyan et al [6], which is given by

ÛQPQPQ(#$) = e%#$Q e#$P/2 e(1−2%)#$Q e#$P/2 e%#$Q,
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Symmetric, symplectic, second order integrator

   controls coefficient of higher order termsλ
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where Q and P represent the coordinate and momenta update operators respectively and ! is a

tuneable parameter whose optimal value is found to be ! ≈ 0.1931. The Omelyan integrator is

approximately double the cost of leapfrog, but theoretically should lead to a 3 fold improvement in

conservation of the Hamiltonian: a net 50% gain. This integration scheme can of course be used

with RHMC, and leads to a near 40% improvement in acceptance rate (see Table 3).

Integrator "# A%

Leapfrog 0.02 63.6

Omelyan 0.04 88.8

Table 3: A comparison of the leapfrog and

Omelyan integrators, using domain wall fermions

(V = 163 ×32×8, Iwasaki gauge action, $ = 2.13,

mud = ms/2).
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Figure 5: DWF Force magnitude ($ = 2.13,

mud/ms = 0.25, V = 243 ×64×16)

5.2 Exact Heavy Mode Cancellation

In the results presented in §4, the RHMC domain wall calculations were performed using only a

stochastic cancellation of the heavy modes, and it was noted that this leads to larger fermion forces,

hence a more costly algorithm. Since that study was conducted, a resolution to this problem has

been found. The one flavour DWF determinant can be rewritten as
√

detM†
PFMPF

detM†
PVMPV

= det
[

(M†
PVMPV)

−1/8(M†
PFMPF)

1/4(M†
PVMPV)

−1/8
]2

,

and the resulting pseudofermion action is given by

SF = %̄
[

(M†
PVMPV)

1/4(M†
PFMPF)

−1/2(M†
PVMPV)

1/4
]2
% = %̄

[

r1(M
†
PVMPV)r2(M

†
PFMPF)r1(M

†
PVMPV)

]2
% ;

where r1(x) ≈ x1/4 and r2(x) ≈ x−1/2. The kernel that appears in the bilinear term is now in a form

that allows heatbath evaluation (it is the square of a real positive operator) and a multi-shift solver

can be used to evaluate each rational function that appears in the action. At each step of the MD

trajectory three inversions are required compared to two for the stochastic formulation presented in

§4. Since two of these inversions are using the Pauli-Villars matrix the cost of the extra inversion

is negligible. This formulation should allow for large increases in the integration step-size. This

shall be the subject of further study.

5.3 Fermion force tuning

The RHMC fermionic force given in equation (2.1) is just a sum of HMC-like force terms, each

with different magnitude. Figure 5 is a plot showing the magnitude of the force associated with

each shift. Also included is the number of conjugate gradient iterations required by the solver for

each shift. The key point is that the most expensive shifts are also those which contribute least to
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where Q and P represent the coordinate and momenta update operators respectively and ! is a

tuneable parameter whose optimal value is found to be ! ≈ 0.1931. The Omelyan integrator is

approximately double the cost of leapfrog, but theoretically should lead to a 3 fold improvement in

conservation of the Hamiltonian: a net 50% gain. This integration scheme can of course be used

with RHMC, and leads to a near 40% improvement in acceptance rate (see Table 3).

Integrator "# A%

Leapfrog 0.02 63.6

Omelyan 0.04 88.8

Table 3: A comparison of the leapfrog and

Omelyan integrators, using domain wall fermions

(V = 163 ×32×8, Iwasaki gauge action, $ = 2.13,

mud = ms/2).

0 1 2 3 4 5 6 7 8 9
Partial fraction

0

200

400

600

800

1000

C
G

 i
te

ra
ti

o
n
s

Relative force
CG iterations

Figure 5: DWF Force magnitude ($ = 2.13,

mud/ms = 0.25, V = 243 ×64×16)

5.2 Exact Heavy Mode Cancellation

In the results presented in §4, the RHMC domain wall calculations were performed using only a

stochastic cancellation of the heavy modes, and it was noted that this leads to larger fermion forces,

hence a more costly algorithm. Since that study was conducted, a resolution to this problem has

been found. The one flavour DWF determinant can be rewritten as
√

detM†
PFMPF

detM†
PVMPV

= det
[

(M†
PVMPV)

−1/8(M†
PFMPF)

1/4(M†
PVMPV)

−1/8
]2

,

and the resulting pseudofermion action is given by

SF = %̄
[

(M†
PVMPV)

1/4(M†
PFMPF)

−1/2(M†
PVMPV)

1/4
]2
% = %̄

[

r1(M
†
PVMPV)r2(M

†
PFMPF)r1(M

†
PVMPV)

]2
% ;

where r1(x) ≈ x1/4 and r2(x) ≈ x−1/2. The kernel that appears in the bilinear term is now in a form

that allows heatbath evaluation (it is the square of a real positive operator) and a multi-shift solver

can be used to evaluate each rational function that appears in the action. At each step of the MD

trajectory three inversions are required compared to two for the stochastic formulation presented in

§4. Since two of these inversions are using the Pauli-Villars matrix the cost of the extra inversion

is negligible. This formulation should allow for large increases in the integration step-size. This

shall be the subject of further study.

5.3 Fermion force tuning

The RHMC fermionic force given in equation (2.1) is just a sum of HMC-like force terms, each

with different magnitude. Figure 5 is a plot showing the magnitude of the force associated with

each shift. Also included is the number of conjugate gradient iterations required by the solver for

each shift. The key point is that the most expensive shifts are also those which contribute least to

115 / 5

Can handle Pauli-Villars with separate stochastic field or 
use single field for light and Pauli-Villars determinants

Noted by Vranas, implemented for QCDSP by Dawson 
and for QCDOC and RHMC by Clark



Domain Wall Fermions
det

[

D†(M5, ml)D(M5, ml)
]

det1/2
[

D†(M5, ms)D(M5, ms)
]

det3/2 [D†(M5, 1.0)D(M5, 1.0)]

=
det

[

D†(M5, ml)D(M5, ml)
]

det [D†(M5, ms)D(M5, ms)]

det3/2
[

D†(M5, ms)D(M5, ms)
]

det3/2 [D†(M5, 1.0)D(M5, 1.0)]

Quotient force HMC Quotient force RHMC

Hasenbusch preconditioned 
with strange quark

Pauli-Villars mass cancels 
bulk modes

Small force, but expensive 
to calculate

Large force,  less expensive 
to calculate

3, 1/2 power fields 
further reduce force
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